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A Risk-Based Approach to Designing Effective Security Force Training Exercises 
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Abstract 
 

The effectiveness of a security force in protecting a facility is often evaluated using 
training exercises that pit a group of simulated attackers against a security team.  In 
the situation studied here, the testers assigned increasingly sophisticated facility 
knowledge to the attackers.  Security managers while not wanting to ignore these 
attacks feared they would be forced to concentrate resources on unrealistic 
scenarios at the expense of more credible threats.  The problem was investigated 
using the Logic Evolved Decision (LED) method.  The results of the analysis 
demonstrated that, for highly protected facilities, there was a strong tradeoff 
between the adversary’s risk of interdiction arising from the attempt to collect more 
information before the attack versus settling for less information and mounting an 
attack with a lower likelihood of success.  Security risk is not necessarily 
minimized by focusing exclusively on highly enhanced attacks at the expense of 
more probable, but less enhanced attacks. 

 
Introduction 
 
The effectiveness of a security force in protecting a secure facility is often evaluated 
using training exercises that pit a group of simulated attackers against a security team.  In 
the natural progression of such exercises, as the defenders become more effective, the 
testing body imposes more challenging security scenarios by asserting, for example, that 
the attackers can disable important security systems.  This amounts to implicitly 
assigning potentially high levels of facility knowledge to the attackers.  Not surprisingly, 
a security force’s assessed effectiveness decreases under such conditions, and the 
defender is forced to substantially alter his capabilities and response in order to 
successfully resist the attacks.  As the sequence of exercises progresses, the knowledge 
attributed to the attackers becomes highly unrealistic for most adversaries, with the 
attendant danger that security resources are concentrated on stopping unrealistic scenarios 
at the expense of more credible threats. 
 
To address this issue, we used the Logic Evolved Decision (LED) approach1 to study the 
tradeoff from an attacker’s viewpoint between increasing his likelihood of success by 
carrying out enhancing actions, versus increasing his risk of interdiction by gathering the 
extra information and knowledge required to carry out the enhancing actions.  In this 
paper we discuss the methodology utilized and present illustrative results.  
 
Methodology 
 
The probability of success for an attacker can be enhanced by certain types of knowledge.  
Examples of this knowledge includes details about the electrical power system for the 



facility security equipment, and information concerning the communications system used 
by the security forces. Using this knowledge, the attacker could carry out actions to 
degrade the security response to an attack.  These actions are termed enhancements and 
lead to enhanced scenarios.  The knowledge required to accomplish the enhancement is 
called enhancing information. 
 
Collecting enhancing information requires additional effort on the part of the attacker and 
will tend to increase the attacker’s risk of detection and interdiction prior to the attack.  
To assess this increased cost to the attacker we modeled the espionage processes an 
attacker could use to collect different types of enhancing information.  These espionage 
scenarios were generated using deductive logic gate models called possibility trees.2   
 
A possibility tree is a convenient graphical method for creating complex directed graphs 
through a systematic deductive process.  The steps in the deductive process involve the 
use of conjunction and disjunction.  A disjunctive deductive step expresses a parent entity 
as an exhaustive set of specific instances.  A conjunctive deductive step decomposes a 
parent entity into a conjunction of disjoint entities that taken together produce the parent 
entity.  The relationship between the parent entity and its children is expressed through a 
logic gate.  In a possibility tree, gates include traditional Boolean logic gates as well as 
non-commutative gates expressing more complicated relationships such as causality. 
 
A possibility tree for gathering electrical power information is shown in Fig. 1.  The top 
node G1 is a statement of the objective of the attacker’s actions: “The attacker causes a 
security power outage.”  Below this node, the ways this objective could be accomplished 
are deduced in progressively greater detail with each new level in the tree structure.  The 
type of logic gate predominantly used in this development is called a causal gate and 
represents the logic of a process.  For example, the goal stated at node G2, “The attacker 
causes a general power outage” is accomplished by the steps: “The attacker takes out the 
normal power supply” and “The attacker takes out the emergency power supply.”  The 
first of these steps, shown as a diamond symbol at G3, denotes a logical structure that is 
collapsed (not shown).  
 
The action described at node G4: “The attacker takes out emergency facility power,” is a 
process accomplished by carrying out steps G5, “The attacker obtains information about 
emergency power,” and G6 “The attacker carries out the attack on the emergency power 
system.”  Under node G5, the possible sources of information (e.g., “from facility 
website”) are enumerated.  Under each source the measures designed to protect the 
information are enumerated.  A logical description of an objective and how it can be 
carried out, including the preventive measures designed to defeat the information 
gathering is coded in the logic-gate tree thus constructed. 
 
A well-defined manipulation of the information coded in this tree produces a path 
solution that is identical to the paths through the directed graph represented by the logic-
gate tree.  The path solution provides a list of scenarios for gathering electrical power 
information that the attacker can use to degrade the security system and enhance the 
attack.  The paths also includes the preventives in place to inhibit the collection of the 
required knowledge.  An illustrative path is: 



 
The attacker causes a security power outage.  The attacker causes a general power 
outage.  The attacker takes out the emergency power supply.  The attacker takes out 
emergency facility power.  The attacker obtains information about emergency power 
from the facility website.  The website protective measures include website access 
limited to facility personnel and limited electrical system detail on the website. 
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Figure 1.  Attack Enhancement Possibility Tree 
 
The electrical system degradation portion of the scenario in black describes what the 
attacker does to enhance his likelihood of success.  The information gathering process for 
the scenario is shown in text in red.  The preventive measures associated with the 
information gathering process, shown in blue, provide a basis for evaluating the cost 
incurred by the attacker in gathering the enhancing information. 
 
An important part of our approach was to determine the relative likelihood that different 
possible attack scenarios are attempted.  We computed the attempt likelihood of attack 



scenarios by constructing a game.  In this game, the players are the defender and the 
attacker.  The object of the game is for the attacker to access the target and the defender 
to prevent this access.  The game is played under incomplete information:  the attacker 
does not know all of the details of the defenses, but can try to gain more details to 
enhance his probability of winning.  Conversely, the defender does not know the extent 
of the attacker’s knowledge, but tries to prevent access to helpful information and 
interdict the attacker during the information-gathering phase of the attack. 
 
In this game we represented the probabilities and utilities associated with the game as 
linguistic variables and expressed uncertainty by treating the linguistic values of the 
variables as fuzzy sets.  In our game, utility is measured by the linguistic variable 
Attractiveness and is a measure of the relative preference an attacker seeking maximum 
payoff would exhibit towards a set of attack scenarios. 
 
Attractiveness is inferred based on a number of factors using an inferential model.  The 
structure of the Attractiveness inferential model is shown in Fig. 2.  Input variables are 
shown as dark-colored nodes.  The light colored nodes are If … then… rule sets that show 
how values of their input variables combine to produce values of the node variable.  The 
uncertainty is expressed using fuzzy set membership values, in contrast to a Bayesian 
network approach in which uncertainty in the values is expressed using conditional 
probabilities.  
 
The inferential model considers the Attractiveness of each scenario from the attacker’s 
viewpoint.  Attractiveness is inferred from the variables “Total Adversary Risk,” “Info 
Gathering Effort,” and “Final Success Likelihood.”  The most attractive scenarios for 
the attacker will be those that maximize the success likelihood while imposing acceptable 
costs and risks of interdiction during the information-gathering phase of the attack.  The 
success likelihood includes both the success likelihood without any enhancements, and 
the effect of the enhancements. 
 
To generate the Attractiveness estimate for an attack scenario that includes 
enhancements, values must be assigned for each of the input variables (the darker 
oblongs) in Fig. 2.  These assignments are elicited from security and counter-intelligence 
experts.  An example of a linguistic variable is “Confidence in Electrical Info” shown at 
the left top corner of the inference diagram as an input to “Electrical Info Enhancement 
of Success Likelihood.”  The variable “Confidence in Electrical Info” can take on the 
linguistic values low, moderate or high, each of which is a fuzzy subset of the variable.  
The membership assigned to each of these possible fuzzy subsets reflects an expert’s 
beliefs concerning the values for that scenario.  The other input to the variable 
“Electrical Info Enhancement of Success Likelihood” is the variable “Likelihood of 
Successful Elec Info Collection,” which also takes on linguistic values low, moderate or 
high.  
 



 
 

Com. Info 
Risks

Com. Info 
Effort

Likelihood 
of Com. Info 

Collection

Confidence 
in Com. 

Info

Level of 
Com. Info

Com. Info 
Enhancement 

of Success 
Likelihood

Com. Info 
Risks

Com. Info 
Effort

Likelihood 
of Com. Info 

Collection

Confidence 
in Com. 

Info

Level of 
Com. Info

Com. Info 
Enhancement 

of Success 
Likelihood

 
Figure 2.  Inferential Model for Assessing Attack Attractiveness 

 
Once values have been assigned to all the input variables in the inference diagram, the 
values propagate through the linked If…Then… rules to produce a value for the output of 
the inference model: “Attractiveness.”  An example of an If…Then… rule for 
“Electrical Info Enhancement of Success Likelihood” is shown in Fig.3.  The analyst 
has great freedom in choosing the linguistic values and the If…Then… rules to capture the 
relationships between the factors in the inferential model.  For example, in the rule shown 
in Fig. 3.  High “Likelihood of Successful Elec Info Collection” and High “Confidence 
in Electrical Info” implies a value of high for “Electrical Info Enhancement of 
Success Likelihood” as outlined in yellow.  Uncertainty in the results is propagated 
based on uncertainty in the inputs using fuzzy sets.  The mathematics for this propagation 
is the Max-Min operation commonly used in fuzzy sets controllers.3 
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Figure 3.  Typical If … Then … Rule for Inferential Model 
 
Illustrative Results 
 
The specific details of the actual analysis are sensitive, but we can illustrate the kinds of 
analysis performed and the types of results obtained with a hypothetical example. In this 
example, an attacker wishes to access a protected material stored in a secure facility.  
This facility is protected by an armed guard force and elaborate physical security 
systems.  These systems include protected electrical power sources for security 
equipment, secure communications that include broadcast and other elements, and a 
personnel security system that includes clearances, counter-intelligence programs, a 
system of security badges, compartmented information and a personal assurance 
program.  
 
In actual studies, input data for our inferential model is collected from personnel 
knowledgeable about the electrical, communications and material tracking aspects of the 
facility, as well security, intelligence and counter-intelligence personnel.  The experts we 
worked with found the linguistic inferences and the fuzzy set uncertainty representation 
to be a natural mode for expressing their ideas.  In this example analysis we use 
representative values. 
 
To carry out our example analysis we assume that all practical scenarios for gaining 
detailed information on disabling electrical power to security systems require that the 
adversary gain access to either documents or electrical specialists for the target facility.  
Controls on the documents require a compelling need in order to gain access.  The 
electrical specialists are the most direct source of useful information for an attacker.  
Given access to the electrical specialists, the aiding information could be elicited, coerced 
or the specialists could be recruited.  Elicitation carries high risks to the adversary, 
however, because the electrical specialists are very aware of the sensitivity of their 



knowledge, are very reluctant to share it with anyone and could become suspicious if 
anyone asks detailed questions.  
 
Attractiveness values for the example are shown in Fig. 4.  Each of the enhancement 
levels represents disabling of electrical (E) and communications (P) to some level.  Three 
levels of communication disruption are: disruption of all communication channels (F), 
disruption of broadcast communications only (B) and none (N).  For security-system 
electrical power disruptions, only the levels full (F) and none (N) are considered.  Thus, 
E-F P-B implies the attacker gathered sufficient information to completely disable the 
security system electrical power s and disable broadcast communications capabilities.  
The axis labeled “measure” shows lists not only Attractiveness, but some interesting 
intermediate nodes in the inference diagram.  The relative value is the centroid for each 
measure.3  The bar graph shows that the most attractive scenarios (E-F P-N and E-N P-N) 
involve no or minimal extra information gathering on electrical or communications 
systems.  Although in those cases there is less enhancement of the success likelihood, 
there is also a significantly reduced information gathering risk.  In contrast, when full 
electrical and full or broadcast communication aiding information is gathered (E-F P-F 
and E-F P-B), there is a potential enhancement in the success likelihood from the 
attackers standpoint if the attack is carried out.  But the attacker pays a heavy price before 
the attack in the form of an increased risk of discovery and interdiction during the 
information gathering effort. 
 
The example analysis results are typical.  The attack scenarios with the highest likelihood 
of success given an actual attempt also carried the highest risk to the adversary of 
prevention or interdiction before an attempt was even made.  The interdiction and 
prevention likelihood were higher principally because of the actions required to collect 
highly detailed target and facility information.  There was a strong tradeoff between the 
adversary’s risk of interdiction arising from the attempt to collect more information 
before the attack versus settling for less information and mounting an attack with a lower 
likelihood of success.  
 
Conclusions 
 
When the only practical information gathering scenarios involve the attacker co-opting a 
select group of insiders who have access to facility details, the risk is greatly increased to 
the attacker.  This is because the attacker does not have a large pool of potential 
collection targets and has a lower likelihood of locating a willing subject than when the 
potential pool is large.  This risk is increased even more when information is effectively 
compartmentalized, because the attacker has to collect from members of several 
knowledge pools.  The risk to the attacker is further increased when the members of the 
target knowledge pool are in a personnel assurance program, are aware of the importance 
of the information they hold, and are reticent about sharing it except to those with a 
compelling need to know.  Compartmentalization of information and personnel assurance 
programs increase the chance that attempts to gain information will be recognized and 
resisted.  The chance of counter intelligence operations that result in interdiction of the 
attacker are also increased significantly.  These factors significantly increase the risk the 



attacker takes in trying to obtain more information to enhance the likelihood of success.  
This increased risk must be weighed by the attacker against the perceived enhancement 
achieved by gaining the extra information about the electrical power system.   
 
These results suggest that realistic gaming best serves the objective of minimizing 
security risk in highly protected facilities.  Some resources should be devoted to scenarios 
with significant attack enhancements that are less likely to be attempted, but more likely 
to succeed.  But it is important to maintain readiness for more straightforward attacks, 
because those attacks are more likely to be encountered than attacks in which the 
adversary has full and detailed facility knowledge.  The actual risk from the minimally 
enhanced attacks will often be greater than from highly enhanced attacks. 
 

 
Figure 4.  Typical Results for the Analysis 
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